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The reducible representations of the point groups are generally studied because 
of their relevance to molecular orbital and vibration theory. Triple col ;elations 
within the polyhedra are described by group-theoretical invariants that are 
related to the permutation representations and termed polyhedral isoscalar 
factors. These invariants are applied in theorems on matrix elements referring 
to the symmetry-adapted bases at different centres. Further invariants or 
geometrical weight factors inter-relate different types of reduced matrix ele- 
ments of irreducible tensors (generalization of the Wigner-Eckart theorem to 
the polycentric case). As a demonstration a complete tabulation is given for 
the point group C4~. 
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I. Introduction 

The purpose of this paper is the study of certain representations of  molecular 
symmetry groups. These representations are in general reducible and composed 
of permutation matrices, i.e. of  matrices obtained from the unit matrix by permut- 
ing the columns. The equivalent atoms of a 174 molecule or a Nb6 cluster, for 
instance, induce such a permutation representation of the tetrahedral or the 
octahedral group. It has been shown that the decomposition of these reducible 
representations plays a central part in finding the symmetry coordinates of the 
molecule [1-3J as well as the symmetry-adapted molecular orbitals [4]. Moreover, 
if we consider interactions, chemical bonds, or two-centre integrals, the edges 
connecting the atomic positions come into question. These edges also form 
equivalent sets and thus induce permutation representations, too. The same 
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applies to the triangular faces and more complex substructures of the molecular 
skeleton involved in the three-centre integrals in MO-LCAO calculations and in 
the configurations of the valence bond theory. Thus it may be worth studying 
these representations and their interrelations from the outset. 

Since the labelling of equivalent particles and the choice of principal axis frames 
are arbitrary, the essential aim must be the definition and calculation of symmetry 
coefficients being invariant to the relabelling of particles and to the transformation 
of axes. As shown in [5], this is achieved by generalizing the theorem of  Wigner 
and Eckart [6], and the factorization lemma of Racah [7], to the polycentric 
case. The present paper is a generalization of the ideas outlined in [5]. 

For the sake of simplicity, the general theory is demonstrated by the small 
symmetry group C4~ acting only in the plane. The extensive results for the frequent 
symmetry groups Td and Oh will be published later. 

2. The symmetry group 

Louck and Galbraith [1] have defined the equivalence of particles in advance of 
the symmetry group by two criteria: (a) the identity of particles in a certain sense 
and (b) the existence of a rotation-inversion operator g E 0(3) such that gR~ = R2. 
This definition would make the two hydrogen atoms in the molecule CH2=CFC1 
equivalent. So we have to restrict the operators and prefer to define the symmetry 
group of a molecule first. Having declared the identity of  particles in a certain 
sense (taking into account mass, charge etc.), we define the symmetry group G 
as that subgroup of 0(3) the elements of which map only identical particles onto 
each other. 

We parametrize the rotation-inversion operators g c G by a unit vector n pointing 
in the direction of the rotation axis, by the rotation angle 4~ (in right-handed 
sense) and by a parity factor p distinguishing the pure rotations (p = +1) from 
the rotary inversions (p --- -1) .  The action of g on an arbitrary vector R is given 
by: 

gR =p" [cos ~b" R + ( 1 - c o s  qS) �9 (n.  R) �9 n +s in  &. (n •  (2.1) 

The representation of g by a unitary operator U(g) acting on functions is then 
given by: 

U(g)f(R) = f ( g - l R ) .  (2.2) 

The inverse operator g-~ in this definition guarantees the product relation 
U(gg') = U(g)U(g, ) ,  i.e. 

U(g) U(g')f(R)= U ( g ) f ( g ' - l R ) = f ( g ' - ~ g - l R ) = f ( ( g g ' ) - ' R ) =  U(gg')f(R). 
(2.3) 

The principal axis frame to which the components of the vector n refer is fixed, 
once and for all time and for all atomic positions, to the Eckart frame at the 
centre of mass [1]. This assures the same meaning of the indices of representa- 
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t i o n  m a t r i c e s ,  C l e b s c h - G o r d a n  coef f i c ien t s ,  o r b i t a l s ,  a n d  s y m m e t r y - a d a p t i o n  

coe f f i c i en t s  in  al l  cases ,  w i t h o u t  a n y  r e c o u r s e  to  l oca l  ax is  f r a m e s .  

F o r  t he  p u r p o s e  o f  r e f e r e n c e  we c o m p i l e  t h e  p r o p e r t i e s  o f  t he  p o i n t  g r o u p  C4~ 

b e g i n n i n g  w i t h  t he  e l e m e n t s  a n d  t h e i r  p a r a m e t e r s .  I n  t h e  l a s t  c o l u m n s  we  a d d  

t h e  c o n j u g a t e  c lass  C to  w h i c h  t h e y  b e l o n g  a n d  t h e  effect  o n  t h e  c o o r d i n a t e s  x 

a n d  y. 

F o r  t h e  d e c o m p o s i t i o n  o f  r e d u c i b l e  r e p r e s e n t a t i o n s  we  n e e d  t h e  c h a r a c t e r s  o f  

t h e  i r r e d u c i b l e  r e p r e s e n t a t i o n s .  S i n c e  t h e  r e p r e s e n t a t i o n  m a t r i c e s  a n  3 j m  s y m b o l s  

r e f e r  to  c e r t a i n  b a s i s  f u n c t i o n s  we  a d d  t h e m  here .  

F o r  s e v e r a l  c a l c u l a t i o n s  t h e  fu l l  r e p r e s e n t a t i o n  m a t r i c e s  a r e  n e e d e d .  T a b l e  2.3 

r e f e r s  to  t h e  b a s i s  o f  T a b l e  2.2. 

Table 2.1. The elements of the group C4o 

g nx ny nz f3 p C x y 

1 0 0 1 0 ~ 1 E x y 

2 0 0 1 90 ~ 1 C 4 - y  x 
3 0 0 1 -90 ~ 1 C 4 y - x  
4 0 0 1 180 ~ 1 C 2 - x  - y  
5 1 0 0 180 ~ - I  o- v - x  y 
6 0 1 0 180 ~ - I  o-~ x - y  
7 1/-/2 -1 / - /2  0 180 ~ -1 o" d - y  - x  
8 l/x/2 1/./2 0 180 ~ -1 o- d y x 

Table 2.2. The characters x~(C) and bases of the irreducible representations of Car 

a E 2C4 C 2 2o-v 2o- a Basis Ia p) 

A~ 1 1 1 1 1 IA~I) = 1 
A 2 1 l 1 - 1  - 1  I A 2 1 ) = x y ( x Z - y  2) 
B 1 1 -1 1 1 -1  [ B j l ) = x Z - y  2 
B 2 1 - I  1 -1  1 IB21)=xy 
E 2 0 - 2  0 0 ]E1)=x,  JE2)=y 

Table  2.3. The matrices D~(&) of representation E 

ik g~ gz g3 g4 g5 g6 g7 g8 

11 1 0 0 - 1  - 1  1 0 0 

12 0 -1 1 0 0 0 -1  1 
21 0 1 -1 0 0 0 -1 1 
22 1 0 0 -1 1 -1 0 0 
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Table 2.4. 3j and 3jm symbols of  C4v 

a b c {abc} klm 3jm 

A tA iA  1 1 111 1 
AIA2A 2 1 111 1 
AiBIB l 1 111 1 
A2BiB 2 - 1  111 1 
AIB2B 2 1 111 1 
A1EE 1 111 1/,/2 

122 11,/2 
A2EE -1  112 1/.,/2 
BIEE 1 111 - 1 / , / 2  

122 1/,/2 
B2EE 1 112 l/x/2 

The 3jm symbols of a group may be calculated as the eigenvectors of the projection 
�9 G - I  D a b c operator P..k,.p = o r d  ~g~O ~k(g)Dl,,,(g)D.v(g): 

[abc\~ =(  abc~ ~ 
Pib"k'vt iln ) \kmp] (2.4) 

P,,..k..p Y~ 
"7 \ iln ] \ kmp ] 

The latter equation will later serve as a model for the calculation of other types 
of coefficients. Since the solution of these equations at least involves an arbitrary 
choice of  phases, we list the non-zero 3jm symbols and the permutation phases 
{abe} for the group Cgv. 

3 .  E q u i v a l e n c e  c l a s s e s  

We now can define the equivalence of particles with respect to the symmetry 
group G. The particle At is equivalent to Ak, if (a) the particles are identical in 
the afore-mentioned sense and (b) there is at least one rotation-inversion operator 
g ~ G(!) such that 

gAj = Ak. (3.1) 

In this way all particles of  a molecule or cluster are divided into disjoint equivalent 
sets. Because (3.1) is an equivalence relation in the mathematical  sense, Louck 
and Galbraith call the equivalent sets equivalence classes. We prefer to use the 
latter term in a more general and abstract sense utilizing the following two 
observations. First, the benzene  molecule C6H6 tells us that different sets of 
equivalent particles may be isomorphic in the sense that, by an appropriate 
labelling, gCi = Ck implies g H i =  Hk and vice versa. On the other hand, equivalent 
sites may not be occupied at all. As an example one may compare the tetrahedral 
molecules P4 and P 4 0 6 .  
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Obviously the site groups which leave invariant the different positions are the 
main issue. They are "defined by: 

H ( m i )  = {h ~ G with hA, = Ai}. (3.2) 

Since the site groups are subgroups of G, the number of equivalent sites or the 
dimension of the equivalence class is given by: 

dim A = ord G /o rd  H ( A i )  (3.3) 

Within an equivalent set A the site groups H ( A i )  are isomorphic to each other. 
If  gA, = Ak and h ~ H ( A i )  then the relation 

g h g - l A k  = ghAi =gAi  = A k  (3.4) 

proves that the isomorphic subgroup 

H ( A k )  = H ( g A , )  = g H ( A , ) g  -1 = {ghg- '  with h c H(A~)} (3.5) 

is the site group of Ak. Hence we define an equivalence class of a symmetry 
group G to be a set of site groups (isomorphic subgroups of G) related by the 
equivalence relation (3.5). The concrete equivalent sets are different realizations 
of  the same equivalence class. 

Note that the site groups may share only one, several, or even all elements. The 
latter case occurs for opposite positions because the inversion operator inter- 
changes with all elements: 

A, = - -ak  = iAk, i.e. H ( A , )  = i H ( a k ) i  = H ( A k ) .  (3.6) 

Since relation (3.5) also maps the conjugate classes of the group into themselves, 
the isomorphism of the site groups implies that the equivalent particles lie on 
equivalent symmetry elements, such as equivalent rotation axes or reflection 
planes, including for the moment the entire R3 as a symmetry element of the 
identity operator. 

This general concept of equivalence classes covers more complex entities than 
particles and their positions. The edges and triangular faces of the molecular 
skeleton which connect the atomic positions form equivalent sets too. In order 
to be precise we define the edges, triangular faces, pseudo-tetrabedra etc. as 
ordered (!) pairs, triples, quadruples etc. of the atomic positions. As a degenerate 
case one position may occur repeatedly in these pairs, triples etc. ("null edges" 
etc.). Consequently two edges (triangles etc.) are equivalent; if there is one 
operator of G mapping the first pair (triple etc.) onto the second in the same 
order, i.e. if S, = (A1, Bin) and Sk = (Ar, Bs) then 

gS, = Sk implies gAt = A,. and gB,~ = Bs. (3.7) 
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Table 3.1. The equivalence classes of C4~ 

G. Fieck 

Class Dim Site group Symmetry el. First position 

O 1 C4~ all O 1 = (0, 0, 0) 
A 4 C s E, crv AI=(1,0,0 ) 
B 4 Cs E, cra B,=(1, 1,0) 
C 8 C t E C1 = (1, 2, 0) 

Table 3.2. The full classes A, B, and C 

Member Position Gen. el. Member Position Gen. el. 

A t 1, 0,0 g~ C1 1, 2,0 gl 
A 2 0, 1, 0 g2 C2 -2, 1,0 g2 
A 3 0, - 1, 0 g3 C3 2, - 1, 0 g3 
A4 -1, 0,0 g4 C4 -1, -2,0 g4 
B 1 1, 1,0 gl Cs -1, 2,0 gs 
B 2 - l ,  1, 0 g2 C6 1, -2 ,  0 g6 
B3 1, -1 ,  0 g3 C7 -2 ,  -1 ,  0 g7 
B 4 - l ,  -1 ,  0 g4 C8 2, 1,0 g8 

Thus the edges, triangles, pseudo- te t rahedra  etc. constitute further realizations 
o f  the same equivalence classes. Of  course, the labels of  these new entities should 
coincide with the label o f  the site group leaving invariant the entire ordered pair  
or triple etc. This rule o f  labelling stresses topological  correlations, which will 
be discussed in Sect. 5. 

As for the g roup  C4~, there are four equivalence classes termed O, A, B, and C. 
Table 3.1 contains a list o f  these classes with their dimension,  the name of  their 
site groups,  and the invariant symmetry elements, an exemplary posit ion vector 
being labelled as number  one. 

Further  members  of  the classes are generated by applying certain elements of  G 
to the first member,  for instance A3 = g3A1  �9 These further members  and their 
generat ing elements are given in the Table 3.2. Of  course, the choice of  the 
generating elements is not  unique. We proceed  as follows. The group elements 
o f  Table 1.1 are applied to A1, for instance, one after another.  I f  g~Al is a new 
position, it is given the next index and g~ is taken as its generating element. This 
is summarized in Table 3.2. 

The coincidence of  the indices o f  Ai, Bi and g~ is due to the simplicity of  group 
C4~ and not  valid in general,  except for the classes with the site group C1, i.e. 
in the present case class C. 

4. Permutation representations 

Each equivalence class, or its realization by an equivalent set, induces a rep- 
resentation of  the symmetry group G. This is b rought  out by writing Eq. (3.1) in 
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a different way. We first introduce a set of matrices o-A(g) belonging to class A by 

o.A (g)_= { ;  i f gA~=Ak  (4.1) 
otherwise. 

Using this definition Eq. (3.1) reads: 

gA, = E o'A(g) " A,. (4.2) 
1 

Applying a second operator g' demonstrates the product property: 

g' gA, : Z o'a(g) " g'A, = Y erA(g) �9 o-A~(g') �9 A,, .  
I lm 

In addition g'gAi =~,,, o'Ai(g'g) " A,,,, so we finally have: 

~ = E ~ " cr'A(g) �9 (4.3) 
l 

Because of  the definition (4.1) the matrices have zero elements except for one 
unit per tow and per column. In this way they represent certain, but not all, 
permutations of the members of the equivalent set. Therefore, we term them 
permutation representations of group G. The characters of these representations, 

o . A ( g )  = Z A o', (g), (4.4) 
i 

have a simple meaning. They are equal to the number of members of an equivalent 
set, which are not affected by the operator g. 

The permutation representations are decomposed to the irreducible representa- 
tions of the group in the usual way. The branching rules are calculated by the 
well-known character formula 

n(a, A) = ord G - I ~  I ~ ( C ) x a ( C ) : ~ o r A ( c ) .  
c 

(4.5) 

We note that the identity representation always occurs once. In addition n(a, A)  <- 
dim a. The proof  of this inequality follows from consideration of Eq. (4.1). 
o'A(g) = 1 holds only if the element g belongs to the site group H(Ai ) .  Therefore, 
the sum for all group elements Y. erA(g) is equal to the order of this site group.  
This order does not depend on the index i. Summing with respect to i then yields 
the sum of  characters Y.g o'A(g) - - -= ord G. This result is equivalent to 

n ( A l ,  A)  = o r d  G-1 ~'~ I ~ ( C ) o ' A ( c )  = 1. (4.5a) 
C 

Because of  the inequality Ix"(C)[_< dim a we now can deduce from Eq. (4.5) the 
required inequality: n(a, A)<-ord G -1 ~ c  A (C)crA(C) " dim a = dim a. In Table 
4.1 we list the characters and the branching rules of the permutation representa- 
tions of group C4~. 
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Table 4.1. The characters oX(c)  of the permuta- 
tion representations of C4v 

G. Fieck 

Table 4.3. SALC coefficients of type 
( Ai ] Aaap ) 

Eq. class X E 2(?4 Ca 2r 2~rv aap A1 A2 A3 A4 

O 1 1 1 1 1 1All 1/2 1/2 1/2 1/2 
A 4 0 0 0 2 1B~I 1/2 -1/2 -1/2 1/2 
B 4 0 0 2 0 1E_I 1/`/2 0 0 -1/`/2 
C 8 0 0 0 0 1E_2 0 1/42 -1/,/2 0 

Table 4.4. SALC coefficients of type 
Table 4.2. The branching rules n(a, X) of Car (Bi]Baap) 

Eq. class X A l A 2 B 1 B 2 E o~ap B1 B2 B3 B4 

O 1 0 0 0 0 1All 1/2 1/2 1/2 1/2 
A 1 0 1 0 i 1B21 1/2 -1/2 -1/2 1/2 
B 1 0 0 1 1 1E_I 1/2 -1/2 1/2 -1/2 
C 1 1 1 1 2 1E_2 1/2 1/2 -1/2 -1/2 

The uni tary matrix decompos ing  the permuta t ion  matrices o f  O "A is written as 
( A i l A a a p ) ,  where a indicates the repeated representations a occurr ing in O " a  

( l < - a < - n ( a , A ) ) :  

Z (Aaap lA i )~rA(g) (Ak  ]A~bq)=  ~(a, ~),5(a, b)D~q(g) (4.6) 
ik 

The matrix elements (A, lAaap) play the essential role in setting up symmetry- 
adapted linear combinat ions  (SALCs).  The symmetry-adapted  molecular  orbitals 
basing on atomic s-orbitals, for instance, are given by: 

IAaap) = ~ ( Ak I a a a p ) "  ]sAk), (4.7) 
k 

with the orbitals s ( r -  Ak) = (rlsAk). 
Therefore,  the matrix elements (AklAaap) are termed SALC coefficients. Iw[4,  5] 
the details concerning the or thogonal i ty  and the calculation o f  the coefficients 
have been worked out. Another  way of  calculating is inspired by Eq. (2.5). 
Since the SALC coefficients are the eigenvectors o f  the project ion operator  
Ppi, qk = o r d  G -1 E g ~  D~q(g)~ the relation analogous to (2.5) reads: 

Pp,.qk = ~ (Ai [Aaaq)(Ac~aplAk). (4.8) 
o~ 

Again the coefficients are not  fixed uniquely and may be redefined by a unitary 
t ransformat ion:  

(A, [Aaap) '  =Y~ U ,~"  (A, JAlap) .  (4.9) 
t3 
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Table4.5. SALC coefficients of type (Ci I Comp) 
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aap C1 C2 C3 C4 C5 C6 C7 C8 

1A,1 1/48 1/48 1/,/8 1/48 1/`/8 1/`/8 1/48 l/`/8 
1A21 1/48 1/`/8 1/`/8 1/`/8 -1/.,/8 -I/`/8 -1/`/8 -1/`/8 
1Bd 1/48 -1/`/8 -1/`/8 1/`/8 1/48 l/`/S -1/-/8 -1/48 
1B21 1/48 -1/48 -1/,/8 1/`/8 -1/`/8 -1/`/8 1/.,/8 1/,/8 
1E_I 1/2 0 0 -1/2 -1/2 1/2 0 0 
1E_2 0 1/2 -1/2 0 0 0 -1/2 1/2 
2E_l 0 -1/2 1/2 0 0 0 -1/2 1/2 
2E_2 1/2 0 0 -1/2 1/2 -1/2 0 0 

This transformation can be utilized to impose certain conditions on the SALC 
coefficients, especially some zeros. In the case n (a, A) = 2 we put (AI IA2a  1) = 0 
and if n (a, A) = 3 we further require (A1]A3a 1) = (A1 [A3 a2) = 0. The orthogonal- 
ity relations then produce further zeros. For n(a, A) = dim a we thus get in general 
(A l lAaap)  = 6(a, p ) .  (Al lApap) .  The main advantage of this transformation is 
a considerable simplification of the higher coefficients to be defined in Sect.7, 
which now, in contrast to [5], can all be expressed by ~ m / n  with integer m and 
n. In Tables 4.3-4.5 we compile the SALC coefficients of the group C4~. For the 
class O we have in general ( 0 1 1 0 1 A l l ) =  1. 

5. Topological correlations 

Having found the equivalence classes of a symmetry group all objects in a 
molecule, i.e. positions or atoms, edges or bonds, faces etc., are related to these 
classes via their site group. The latter offer an adequate numbering of these 
objects. The topological correspondences of  different objects sharing a site group 
have already been mentioned in connection with Eq. (3.7). They are represented 
by topological matrices r. 

Let us think of two atoms A~ and Bk with the site groups H(A~) and H(Bk)  
respectively. The atoms may belong to the same class (A = B) so H(Ag) ~ H(Bk)  
or even may be identical (Ai = Bk) so H(Ai )  = H(Bk).  The edge connecting the 
ordered (!) pair (A~, Bk) has the site group H(Ai )  ~ H(Bk).  I f  the equivalence 
classes found in Sect. 4 are complete, this site group must belong to an equivalence 
class C, for instance. C may be equal to A or B or to both. I f  the label of the 
relevant site group in class C is l, we have: 

H(A~) ~ H(Bk)  = H (  Ct). (5.1) 

In the case of  C4v the indices refer to Table 3.2. We thus get an assignment of  
the pair (Ai, Bk) to the vector C1 sharing the site group: 

(Ai, B~) ~ Ct. (5.2) 
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The validity or non-validity of Eqs. (5.1)-(5.2) for three arbitrary vectors will be 
fixed by a topological matrix belonging to the triple ABC. The first idea is to put 
~.(afc) = 1, if (5.1)-(5.2) hold, and zero otherwise. For reasons of normalization 
we shall take 1/d.,/~--mC instead of 1. From (3.5) and (5.1) we derive: 

H(gA,) c~ H(gBk) = gH(A~)g-' c~ gH(Bk)g ~ = g(H(A,) c~ H(Bk))g-' 

= ~4(gCl) 

or in shortened notation with gA~ = Agi etc.: 

/ ABC'~ ~.( A B C) 
ikl ) - -  gi gk g, 

(5.3) 

(5.4) 

These equations express the congruence of the geometric figures being composed 
of the three vectors Ai, Bk, Ct and Agi, Bgk, C~1 respectively. 

Non-equivalent correlations, i.e. non-congruent geometric figures, often occur 
within the same triple ABC. Several correlations must then be distinguished by 
a multiplicity index. A triple ABC together with the number of the concrete 
correlation will be termed a triad, ABCm for instance. In the case of the group 
C4~, there are two triads AAA1 and AAA2 with the correlations H(A1) ~ H(A~) = 
H(A1) or (A~, A~) ~ Aj and H(AI) c ~  H ( A 4 )  = H(A1) or (A1, A~) ~ A~ (cf. Table 
3.2). Since congruent geometric figures contain the same distances, these distances 
may be used to distinguish the different triads: D(ABCm)= IAi-Bk]. The two 
triads above yield D(AAA1)= 0 and D(AAA2)= 2. 

Taking into account the multiplicity of correlations, we are led to the following 
definition of the topological matrix belonging to the triad ABCm: 

{ A B C'~ " t 1/ d4-d-~ C 
= if H(Ai) c~ H(Bk) = H(C,) and IAi- Bk.[= D(ABCm) (5.5) 

"r~ ikl ] 0 otherwise. 

Because of (5.3) and the invariance of the distances D(ABCm), the matrix 
elements referring to one triad ABCm are again related by: 

\ ikl ] gi gk gl 

The normalization is such that 

ABC m = 1 (5.7) 

The orthogonality relations of the topological matrices elaborated in Eqs. (6.2 
and 3) of [5] can now be re-expressed: 

/ ABC'I m { ABD~I" 
~ r~ ikl ] ,r~ ikp ] =6(C,D)6(m,n)6(l ,p)/dimC (5.8) 
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[ ABC'~ m [ ABC] m 
c~,, r~ ikl ] r~ rsl ] dimC=6(i,r)S(k,s) (5.9) 

The normalization (5.7) is a special case of (5.8). 

It is very laborious to find all of the correlation triads of a symmetry group by 
checking all the positional combinations Ai, Bk, Cl. In order to create a new 
triad by Ai, Bk, CI Eq. (5.1) must hold, but the vectors must not be related to a 
prior combination by the relation (5.6). We therefore postpone the problem until 
we have learned to calculate the multiplicities of the triads directly. 

In connection with Eq. (3.7) we also mentioned triangular faces and pseudo- 
tetrahedra, which are described by ordered triples and quadruples. In the case 
of the triangles the relations analogous to (5.1)-(5.2) read: 

H(Ai)~H(Bk)~H(CI)=H(D,~) or (A~,Bk, Ct)--> Dm. (5.10) 

Again we need a multiplicity index in order to distinguish the inequivalent 
correlations between the triple ABC and the class D. The definition (5.5) is then 
replaced by: 

.r{ABCD~n {:/x/d-~m D if(5.10) holdsand iklbelongsto n 
\ iklm ] = otherwise. 

(5,11) 

These more complex correlations can be reduced to the prior ones by proceeding 
step by step. In a first step two of the three vertices, Ai and Bk for instance, are 
assigned to their connecting edge of equivalence class E, number r. In the second 
step the edge Er and its opposite vertex C1 are assigned to the triangle Din. The 
multiplicity index n is then given by the intermediate class E and the multiplicities 
of the triads ABEp and ECDq. In this way the topological matrix (5.11) is 
decomposed to: 

T( ABCD~" = ~r [ABE '~ P f ECD~ q - -  
\ iklm ] T~ ikr ) T~ rlm ] , /dim E with n = ( E p q ) .  (5.12) 

It is, of course, possible to start with the pair AC or BC instead of AB, thus 
giving rise to different coupling schemes, of. Eq. (7.17), of [5]. These topological 
matrices and their decomposition resemble the 4jm symbols of the theory of 
angular momentum. This allusion will become clearer in the next section. In the 
same way the pseudo-tetrahedra involved by the four-centre integrals of MO 
theory are decomposed by introducing two intermediate edges, cf Eq. (10.10) of 
[51. 

As in all cases involving a multiplicity, the numbering of the triads is arbitrary. 
In the case of C4~ we can interchange, for instance, the triads AAA1 and AAA2 
by setting D(AAA1) --- 2 and D(AAA2) = 0. This also interchanges all the matrices 
defined by (5.5) and (5.6). Moreover, any unitary transformation of the topological 
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matrices, i.e. 

,[ABC~ m {ABC'~" 
U.m ~'\ ikl ,]' (5.13) "r~ ikl ) =~. ABC. 

will not alter the essential relations (5.6)-(5.9). 

6. Product representations 

As for any representations there is a direct product of two permutation representa- 
tions 

o'Ax O "B = ~r A• (6.1) 

the matrix elements of which are given by: 

A x B r  \ O',k,,mkg) = erA(g) " t~m(g). (6.2) 

Obviously the product yields permutation matrices too. The characters are given 
by: 

crA• = crA(g) " ~rB(g). (6.3) 

As is well known, the direct product of irreducible representations is uniquely 
decomposable into irreducible representations. Although the permutation rep- 
resentations are reducible in general, their products are likewise uniquely decom- 
posable to the basic permutation representations again. In this respect they 
resemble the irreducible representations of a group H ~ G taken as reducible 
representations of the subgroup G. This analogy leads to useful concepts in what 
follows. 

The first step is the determination of the branching rules 

A •  t~ = ~ n(A x B, C)tr c. (6.4) 
C 

Because the involved representations are reducible, the multiplicities cannot be 
calculated by character formulae. However, there are, of course, the sum rules 

o'A• =~ n (Ax  B, C) " o'C(K) (6.5) 
c 

for each class of the group. These sum rules have unique solutions for all point 
groups. 

Preparatory to the proof, we point out a necessary property of the solution. 
Denoting the equivalence class of the centre of symmetry by O, the permutational 
representation cr ~ has all characters equal to one. All other permutational rep- 
resentations have some zero characters. Taking this into account, we conclude 
from (6.5): 

n(O x O, O) = 1 and otherwise n(A • B, O) = 0. (6.6) 
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This means that o -~ occurs only once in all the direct products. This observation 
is helpful in some critical cases, the exceptional groups discussed below. 

Now beginning the proof, we turn from (6.5) to another system of conditional 
equations. We multiply by o-D(K) �9 h ( K ) / o r d  G and take the sum for all classes 
of the group. Introducing the matrix 

M( C, D) =ord  G-' E A(K)o-C (K)o'D(K) (6.7) 
K 

and the expression 

L(A, B, D ) =  ord G-')~ A(K)oA(K)o'S(K)o-D(K), (6.8) 
K 

we get the system of equations: 

M( C, D) . n(A • B, C)=L(A,  B, D). (6.9) 
c 

For each pair A•  B this system contains as many equations as unknowns 
n(A• C). The system has unique solutions if the coefficient determinant 
does not vanish, i.e. if 

det [M(C, E)] ~ 0. (6.10) 

It has been checked that this sufficient condition is met by all the following point 
groups: Cn, Cnh, Cnv, $2,, Dnh, Dna, Td, Th, Oh, and lh. In these cases we express 
the solution by the inverted matrix: 

n(A• B, C)=E M-'(D, C) . L(A, B, D). (6.11) 
D 

However, there are some groups, i.e. Dn, T, O, and I with det M = 0. These 
require a more detailed inspection. Since the explication of the permutational 
character tables and branching rules of all these groups would go beyond the 
scope of this study, only the main points are summarized. Because of det M = 0, 
there is one and, as it turns out, only one eigenvector of M with an eigenvalue 
equal to zero. This implies a linear relation within the character table: 

Y~m(C)o'C(K)=O. (6.12) 
C 

The component of the eigenvector m(C) belonging to the equivalence class of 
the centre of symmetry is always equal to two: m(0) = 2. Because of (6.12), the 
right-hand side of Eq. (6.9) is orthogonal to this eigenvector re(C). Therefore, 
solutions exist in this case. If  now n'(A x B, C) is a formal solution of (6.9), there 
are further solutions n( A x B, C) = n'( A • B, C) + a . re(C). The factor a is fixed 
by the conditions (6.6): 

l = n ' ( O x O ,  O)+a~215176 m(O), O=n'(AxB, O)+aA• m(O) 

So no ambiguity remains. Further, only the factors a fixed in this way produce 
non-negative and integer multiplicities. Summing up, the branching rules (6.4) 
are not affected by the relations (6.12), because the former involve o -~ once, at 
most, but the latter always twice. 
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As usual, the product representations are decomposed by unitary transformations. 
These are directly related to the topological matrices of the last section; more 
precisely, the topological matrices play the role of Wigner's 3jm symbols. In 
order to prove this, we write (5.6) more explicitly: 

[ABC,"ikl ] rs, A B c ( A B C )  m = ~ ~rr,(g)~r,k(g)cr,t (g)'c . (6.13) 
rst 

Taking the sum over all elements of the group shows that the topological matrices 
are eigenvectors of the projection operator 

Pr~,igl=ord G -1 E A ~ C . crri(g)~rsg(g)~,, (g). (6.14) 
gG 

Comparing now 

_ J A B C \  ~ [ABC'~ m 
~rst tJrst'ikl ~ rst ) ='c~ ik' ) "  (6.15) 

with (2.4) proves the statement. In contrast to (2.4) the topological matrices are 
not the only solutions of Eq. (6.15). Therefore the analogue of (2.5) or of (4.8) 
does not hold. The decomposition of ~r A• is shown by rearranging (6.13) using 
the orthogonality relations: 

[ABD\~ a B [ABC\m 
,~,.kr~ ikt )trri(g)O"k(g)';~ rsp ) dimC=6(D,C)6(n,m)cr~(g). (6.16) 

Of course, it is possible to introduce a Clebsch-Gordan-like coefficient for the 
permutation representations: 

(An, Bp I ABmCq) = r( ABC] m" ~ C. 
\ npq / 

Since our example, the group C4~, does not belong to the exceptional groups, 
we can proceed in a straightforward manner. The matrix defined by (6.6) reads 

(11,1)3 2 M =  2 3 

4 4 

with det M = 3. From this it follows that: 

8 - 4  - 4  ! )  

M_ 1 1 - 4  5 2 - 
3 - 4  2 5 - 

3 -3  - 3  3 

In both cases the order of rows and columns is according to O, A, B, C. The 
branching rules are now found by calculating L(A, B, D). Because of its symmetry 
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Table 6.1. Values of L(X, Y, Z)  according to (6.8) 

X YZ  = A A  AB A C  BB BC CC 

A 10 8 16 8 16 32 
B l0 16 32 

C 64 

Table 6.2. The permutational branching rules of C4 v 

O -O O- A O- B O- C 

0 - 0  0 - 0  0 -A 0 -B 0 - C  

(T A 20 -A + O -c 20 -c 4o -c 

O-B 20-B + o  -c 40 -c 
O - C  8 0  -C 
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and because L(A,B,  O ) = M ( A , B ) ,  there remains the evaluation of ten 
expressions given in Table 6.1. 

Applying now (6.11) gives the branching rules of Table 6.2. 

Having learnt the multiplicities of Table 6.2 we look for one positional triple A~, 
Bk, Ct of each triad ABCm. The result of this investigation is compiled in Table 
6.3. In the last column the value of the matrix element zABC~m Zt ikl ) is added. 

The other triples of these triads follow from the first one by (5;7). In the case of 
AAA2, for instance, we get from A1A4A1, or in short 141, the further triples 232, 
323, and 414. In the case of AAC1 from 121 follow 242, 313, 434, 425, 126, 347, 
and 218. The common feature of the triples belonging to a triad is that the three 
vectors subtend the same geometrical figure except for the different orientation 
in space. The site group of the geometrical figure is given by the first two vectors 
jointly, as well as by the third one separately. 

Referring to site groups instead of concrete positions or geometrical figures, we 
have reached a point of view superior to that of [5, 8] in several aspects: 

(a) In [8] we used the distance vectors A i - B k  instead of the ordered pairs 
(A~, Bk). This made it somewhat artificial to distinguish between (Ai, Bk) and 
(Bk, Ai) or between (Ai, Ai) and (Ak, Ak) as in [5]. For general correlations or 
two-point functions this distinction makes sense. 

(b) Since the distance vectors A~- Bk belonging to different triads have different 
lengths, they were labelled by different symbols, in the case of C4~ for instance 
O r  and T ~ = A 1 - A 4 .  Although the isomorphism of the sets 0 A and 
T A was noticed, this notation led to the triples AAO A and A A T  A instead of our 
triads AAA1 and AAA2, thus obscuring the multiple correlations between the 
very same equivalence classes. 

(c) Finally, taking the triangular faces and the pseudo-tetrahedra as different 
objects, we had to describe their correlations with the atomic positions by different 
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Table 6.3. Topological matrix elements of group C4~ 

triad i k t r 

0 0 0  1 1 1 1 1 
OAA 1 1 1 1 1/2 
OBB 1 1 1 1 1/2 
OCC 1 l 1 1 1/48 
AAA 1 1 1 1 1/2 

2 1 4 1 1/2 
AAC 1 1 2 1 1/~/8 
ABC 1 1 1 1 1/-/8 

2 1 2 1 1/48 
ACC 1 1 1 1 1/,/8 

2 1 2 1 1/48 
3 1 3 1 1/48 
4 1 4 1 1/48 

BBB 1 1 1 1 1/2 
2 1 4 1 1/2 

BBC 1 1 2 1 1/`/8 
BCC 1 1 1 1 1/,/8 

2 1 2 1 1/,/8 
3 1 3 1 1/,/8 
4 1 4 1 1/,/8 

CCC 1 1 1 1 1/,/8 
2 1 2 1 1/-/8 
3 1 3 1 1/,/8 
4 1 4 1 1/,/8 
5 1 5 1 1/`/8 
6 1 6 1 1/48 
7 1 7 1 1/`/8 
8 1 8 1 1/,/8 

t opo log i ca l  mat r i ces  o f  a so-ca l led  s e c o n d  a n d  th i rd  k ind .  R e g a r d i n g  these  
geomet r i ca l  f igures as fu r the r  r ea l i za t ions  o f  the  s ame  e q u i v a l e n c e  classes m akes  
this  d i s t i n c t i o n  obsole te .  This  un i f i ca t i on  o f  all  k i nds  of  t opo log i ca l  mat r i ces  has  

b e e n  a n t i c i p a t e d  by  the  i n t r o d u c t i o n  o f  " g e n e r a l i z e d "  t opo log i ca l  ma t r i ces  in  

Chap .  20 o f  [5];  the  c o n c e p t  o f  e q u i v a l e n c e  classes of  site g roups  b r ings  ou t  the  

facts m u c h  m o r e  clearly.  

4. Polyhedral isoscalar factors 

F o l l o w i n g  the  a n a l o g y  o f  the  t opo log i ca l  mat r i ces  to the  3jm sym bo l s  o f  r e d u c i b l e  

r e p r e s e n t a t i o n s  we t r a n s f o r m  the  mat r i ces  to a s y m m e t r y - a d a p t e d  basis .  A c c o r d i n g  
to (4 .6) - (4 .7)  we get: 

/ABC\  m 

~.[aBy | / A B C \ "  
~abc ] = ~ t r ~  rst ) (ArlAaan)(B~lBflbp)(C'[Cycq)" (7.1) 

~ npq 
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Using now Racah's factorization lemma [7] we get 

tA  /m 
~|afly I =~ PIs[~fly l " (7.2) 

\ npq / \ abc ]~ 

This relation defines the "polyhedral isoscalar factors" or in short "polyhedral 
isoscalars". These factors are the central invariants of the group theory for 
polycentric systems. By equating the right-hand sides of  (7.1) and (7.2) and 
rearranging the resulting equation we get the theorem 

[abd\ ~ 
rs~tnp \ rst / 

= 6(c, d)6(q, k) dim c -1" PIs |  . (7.3) 
/ 

\ abe/  

Finally the calculation of the factors is done by: 

fABC\  m r(ABC~" /abc\ ~ 
PIs I o~fly l --- ~t ~ (A~IAaan)(BsIBflbp)(CttCycq)~npq) " 

\ abe ]~ "Pq \ rst / 

(7.4) 

The polyhedral isoscalars obey the following orthogonality relations: 

2 PIs[ aflyl  PIs[ o~f16 1 = 6(C, D)6(m, n)8(y, 6) dim c/dim C (7.5) 
~,,b~ \abc  ], \ abc 1~ 

dim C. PIs| o~fly I PIs| o-ry 

c~v \ abc 1~ \ stc In 

= 6(a, s)6(a, cr)6(b, t)6(fl, ~')6(e, 77). dim c. (7.6) 

Note that in both relations the factors must contain the same irreducible rep- 
resentation c, but there is no sum over c in either case. The relations (7.3)-(7.6) 
are quite analogous to those of the common isoscalars referring to group chains 
[5, 9]. 

As a consequence of the unification of the topological matrices the distinction 
of several kinds of polyhedral isoscalars in [5] becomes obsolete, too. The 
polyhedral isoscalars are group-theoretical invariants independent of  the special 
choice of  labellings and axis frames. Yet, as often in group theory, different 
corpora of coefficients may be created because of different choices of phases or 
because of  unitary transformations in the case of multiplicities. The different 
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Table 7.1. Polyhedral 
isoscalars 
PL~( OAAm ] a3  3,1abc ) 

Table 7.2. Polyhedral 
isoscalars 
PIs( OBBm la~Tl  abc) 

Table 7.3. Polyhedral 
isoscalars 
Pls( OCCm [ c ~ y  l abc ) 

a~y  abc m = 1 af ly  abc m = 1 a f ' y  abc m = 1 

111 A I A I A  , 1/2 111 A1A1A l 1/2 
111 A1B1B ~ 1/2 111 AiB2B 2 1/2 
111 A~E_E_ 1/,/2 111 A l E _ E _  1/,/2 

111 A1A~A ~ 1/,/8 
111 AIA2A 2 1/,/8 
111 A1BIB t 1/4'8 
111 AtB2B 2 1/,/8 
111 A t E _ E _  1/2 
112 A t E _ E _  0 
121 A l E _ E _  0 
122 A l E _ E _  1/2 

Table 7.4. Polyhedral isoscalars 
Pls( A A A m  l af ly l abe) 

Table7.5. Polyhedral isoscalars 
PIs( BBBm [ a,ST l abe ) 

a~y  abc m = 1 m = 2 

111 A~A1A 1 1/4 1/4 
111 A1BIB ~ 1/4 1/4 
111 A l E _ E _  1/,/8 -1/ , /8 
111 B1A1B t 1/4 1/4 
111 B1BlA l 1/4 1/4 
111 B,E_E_ -1/`/8 1/,/8 
111 E_A1E_ 1/,/8 1/,/8 
111 E_B~E_ - 1 / , / 8  - 1 / , / 8  
111 E_E_A,  1/,/8 -1/, /8 
111 E E_BI -1/ , /8 1/,/8 

cqSy abc m = 1 m = 2 

111 A~A~A l 1/4 1/4 
111 A~B2B 2 1/4 1/4 
111 A~E_E_ 1/,/8 -1/`/8 
111 B2A~B 2 1/4 1/4 
111 B2B2A 1 1/4 1/4 
111 B2E_E_ 1/48 -1 /48 
111 E_AIE_  1/`/8 1/48 
111 E_B2E_ 1/,/8 1/,/8 
111 E_E_AI  1/,/8 -1/ , /8 
111 E_E_B2 1/,/8 -1/, /8 

Table 7.6. Polyhedral 
isoscalars 
Pls( A A  Cm l cqS y l abc ) 

Table 7.7. Polyhedral 
isoscalars 
PIs(ABCmla3~, labc)  

Table 7.8. Polyhedral 
isoscalars 
PIs( B BCm l af ly  l abc) 

afi7 abc m = 1 

111 A1AIA1 1/4 
111 A1BIB 1 -1 /4  
111 A l E _ E _  0 
112 A~E_E_ 1/`/8 
111 BIAIB 1 1/4 
111 BIBIA l -1/4 
111 BIE_E_ 0 
112 B~E_E_ 1/`/8 
111 E_AIE_  1/`/8 
112 E_A1E_ 0 
111 E_B~E_ 1/`/8 
112 E_BIE_ 0 
111 E_E AI 0 
111 E_E_A2 1/`/8 
111 E_E_B  1 0 
111 E_E_B 2 1/,/8 

a,8"/ abc m = 1 m = 2 

111 A1AIA l 1/4 1/4 
111 AIB2B 2 1/4 -1 /4  
111 A l E _ E _  1/4 -1/4 
112 A l E _ E _  1/4 1/4 
111 B1AIB 1 1/4 1/4 
111 B1B2A 2 1/4 -1 /4  
111 BIE_E~ -1 /4  1/4 
112 B1E_E_ 1/4 1/4 
111 E_AIE_  1/-,/8 1/,/8 
112 E_AIE_  0 0 
111 E_B2E_ 0 0 
112 E_B2E_ 1/'/8 -1/`/8 
111 E_E_A 1 1/4 -1 /4  
111 E _E _A  z 1/4 1/4 
111 E_E_B 1 -1 /4  1/4 
111 E_E_B 2 1/4 1/4 

c~fly abc m = 1 

111 AIA1A I 1/4 
111 A1B2B 2 -1 /4  
111 A I E _ E  -1 /4  
112 A l E _ E _  1/4 
111 B2AIB 2 1/4 
111 B2B2A 1 -1 /4  
111 B2E_E_ 1/4 
112 B2E_E_ -1/4 
111 E A1E_ 1/4 
112 E_AIE_  1/4 
111 E_B2E_ -1 /4  
112 E_B2E_ -1/4 
111 E_E_A  1 0 
111 E_E_A  2 1/,/8 
111 E_E_B  1 1/,/8 
111 E_E_B 2 0 
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Table 7.11. Polyhedral isoscalars PIs(CCCm I a~7[abc) 

ar abc m=l  m=2 m=3 m=4 m=5 m=6 m=7 m=8 

111 AlA1A 1 1/8 1/8 1/8 1/8 1/8 1/8 
111 A~A2A 2 1/8 1/8 1/8 1/8 -1/8 -1/8 
111 A~BlB 1 1/8 -1/8 -1/8 1/8 1/8 1/8 
111 AlB2B2 1/8 -1/8 -1/8 1/8 -1/8 -1/8 
111 AlE_E_ 1/432 0 0 -1/`/32 -1/432 1/,/32 
112 AlE_E_ 0 1/,/32 -1/,/32 0 0 0 
121 AlE_E_ 0 -1/`/32 1/,/32 0 0 0 

1/8 1/8 
-1/8 -1/8 
-1/8 -1/8 

1/8 1/8 
0 0 

-1/,/32 1/,/32 
-1/-,/32 1/,/32 

122 AlE_E_ 1/,/32 0 
111 A2AlA2 1/8 1/8 1/8 1/8 1/8 
111 A2A2A l 1/8 1/8 1/8 1/8 -1/8 
111 A2BlB2 1/8 -1/8 -1/8 1/8 1/8 
111 A2B2Bl -1/8 1/8 1/8 -1/8 1/8 
111 A2E_E_ 0 -1/x/32 1/`/32 0 0 
112 AEE_E_ 1/`/32 0 0 -1/,/32 -1/,/32 
121 A2E E_ -1/,/32 0 0 1//,/32 -1/`/32 
122 A2E_E_ 0 -1/,/32 1/,/32 0 0 
111 BIAIB l 1/8 1/8 1/8 1/8 1/8 
111 BIA2B2 -1/8 -1/8 -1/8 -1/8 1/8 
111 BIB~A l 1/8 -1/8 -1/8 1/8 1/8 
111 BtB2A 2 1/8 -1/8 -1/8 1/8 -1/8 

0 -1/,/32 1/,/32 -1/,/32 0 0 
1/8 1/8 1/8 

-1/8 -1/8 -1/8 
1/8 -1/8 -1/8 
1/8 -1/8 -1/8 
0 1/`/32 -1/,/32 
1/,/32 0 0 
1/,/32 0 0 
0 -1//,/32 1/,/32 
1/8 1/8 1/8 
1/8 1/8 1/8 
1/8 -1/8 -1/8 

-1/8 1/8 1/8 
111 B~E_E_ -1/`/32 0 0 1/`/32 1/`/32 -1/`/32 0 0 
112 B~E_E_ 0 1/`/32 -1/`/32 0 0 0 -1/,/32 1/,/32 
121 B~E_E_ 0 1/`/32 -1/`/32 0 0 0 1/`/32 -1/`/32 
122 B1E_E_ 1/,/32 0 0 -1/432 1/432 -1/`/32 0 0 
111 B2A1B 2 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 
111 BzA2B ~ 1/8 1/8 1/8 1/8 -1/8 -1/8 -1/8 -1/8 
111 B2BlA 2 -1/8 1/8 1/8 -1/8 -1/8 -1/8 1/8 1/8 
111 B2B2A l 1/8 -1/8 -1/8 1/8 -1/8 -1/8 1/8 1/8 
111 B2E_E_ 0 1/`/32 -1/`/32 0 0 0 -1/`/32 1/,/32 
112 B2E_E_ 1/,/32 0 0 -1/`/32 -1/x/32 1/,/32 0 0 
121 B2E_E_ 1/432 0 0 -1/,/32 1/`/32 -1/,/32 0 0 
122 B2E_E_ 0 -1/432 1/,/32 0 0 0 -1/~/32 1/,/32 
111 E_AIE_ 1/,/32 1/`/32 1/`/32 1/,/32 1/432 1/`/32 1/`/32 1/432 
112 E_A~E_ 0 0 0 0 0 0 0 0 
211 E_AIE_ 0 0 0 0 0 0 0 0 
212 E_AIE_ 1/,/32 1/`/32 1/,/32 1/,/32 1/432 1/,/32 1/,/32 1/,/32 
111 E_AzE_ 0 0 0 0 0 0 0 0 
112 E_A2E_ -1/,/32 -1/,/32 -1/,/32 -1,/32 1/,/32 1/,/32 1/,/32 1/`/32 
211 E_A2E_ 1/,/32 1/`/32 1/,/32 1/`/32 -1/`/32 -1/,/32 -1/`/32 -1/,/32 
212 E_AzE_ 0 0 0 0 0 0 0 0 
111 E_BtE_ -1/`/32 1/,/32 1/,/32 -1/,/32 -1/,/32 -1/,/32 1/,/32 1/432 
112 E_BIE_ 0 0 0 0 0 0 0 0 
211 E_B1E_ 0 0 0 0 0 0 0 0 
212 E_B1E_ 1/`/32 -1/,/32 -1/`/32 1/,/32 1/,/32 1/`/32 -1/,/32 -1/,/32 
111 E_B2E_ 0 0 0 0 0 0 0 0 
112 E_B2E_ 1/`/32 -1/`/32 -1/',/32 1/`/32 -1/`/32 -1/,/32 1/432 1/`/32 
211 E_B2E_ 1/`/32 -1/`/32 -1/`/32 1/,/32 -1/`/32 -1/,/32 1/,/32 1/,/32 
212 E_B2E_ 0 0 0 0 0 0 0 0 
111 E E_A 1 1/,/32 0 0 -1/,/32 -1/,/32 1/,/32 0 0 
121 E_E_A l 0 -1/`/32 1/,/32 0 0 0 -1/-,/32 1/,/32 
211 E_E_A l 0 1/`/32 -1/`/32 0 0 0 -1/,/32 1/`/32 
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Table 7.11. (continued) 
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a~7 abc m=l  m=2 m=3 m=4 m=5 m=6 m=7 m=8 

21l E E_A~ 1/,/32 0 0 - 1/`/32 1/ , /32 -1/,/32 0 0 
111 E E _ A  2 0 1/,/32 -1/,/32 0 0 0 -1/,/32 1/-/32 
121 E E_A 2 1/,/32 0 0 -1/,/32 1/`/32 -1/-/32 0 0 
211 E_E_A 2 -1/,/32 0 0 1/`/32 1/-/32 -1/-/32 0 0 
221 E _ E _ A  2 0 l/`/32 --1/-/32 0 0 0 1/-/32 --1/`/32 
111 E E_B~ -1/.,/32 0 0 1/`/32 1/,/32 -1/,/32 0 0 
121 E EB~ 0 1/,/32 -1/,/32 0 0 0 1/-/32 -1/,/32 
211 E _ E _ B  1 0 1/./32 -1/`/32 0 0 0 -1/,/32 1/,/32 
221 E E _ B I  1/`/32 0 0 -1/`/32 1/ , /32 -1/`/32 0 0 
1ll E _ E B  2 0 1/`/32 -1/,/32 0 0 0 -1/,/32 1/-/32 
121 E E_B 2 1/-/32 0 0 -1/../32 1/`/32 -1/,/32 0 0 
211 E_E B 2 1/`/32 0 0 -1/`/32 -1/`/32 1/,/32 0 0 
221 E_E_B 2 0 -1/-/32 1/-/32 0 0 0 -1/,/32 1/,/32 

corpora are related to each other by: 

, / A B C ~ "  / A B C ~ "  

! ! u l  U 2 3 3 3 PIs a ~ y  = y, , ,  m~u,,,u,,u~,~,PIs| cq3y ] (7.6) 

The unitary transformation represented by u ~ is due to a different choice of  the 
3jm symbols, that represented by u z is due to the similar transformation of the 
triads (5.13). Finally the transformations u 3 result from Eq. (4.9). 

As shown in [5], the polyhedral isoscalars play a central part  in calculating matrix 
elements in molecular orbital theory. In the case of  orbitals being more complex 
than atomic s orbitals they occur combined with other invariants like 6j or 9j 
symbols and the isoscalar factors of  the group chain SO(3) c G. In the same way 
as for the latter coefficients, a full tabulation of the polyhedral isoscalar factors 
of  the point groups is needed to make them freely available. Therefore, we now 
give an exhaustive tabulation of the factors for group C4~. The majority of the 
factors involving high multiplicities up to eight belong to the triads of  low 
symmetry, i.e. CCCm,  whereas the symmetrical and more interesting triads like 
A A A 1 ,  A A A 2 ,  and A A C 1  have only a few factors. In order to save space in the 
headings of  the tables the factors are printed as P l s ( A B C m l a • y l a b c  ). The first 
trivial factor is (PIs(O001ll  1 I IAIAIA1)  = 1. 

8. Symmetry adaption 

Usually the application of  quantitative group theory begins with the symmetry 
adaption of basic coordinates, functions etc. An example is the transformation 
from the angular momentum basis or from the cartesian basis to the bases adapted 
to the irreducible representations of  the symmetry group G: 

II~ap) = Y (lm llomp)" Ihn). (8.1) 
m 
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This transformation is not the topic of  the present paper  and we assume that all 
bases are already classified according to the group G. 

As for the cartesian coordinates Eq. (8.1) implies: 

x( ap) = Y. (1 k I lap).  x~,. (8.2) 
k 

In the case of the group C4~ this is simply: 

x(E 1) = xl,  x (E2)  = x2, X(All) = x3. (8.2a) 

In polycentric systems the basic functions [laap) are translated to several centres. 
These centres may be atomic positions or may be fictitious (floating orbitals). 
The translated orbitals are marked by the affix A~ etc.: 

(r [Ailaap) = (r - A~ [ laap) 

or in short notation using the translation operator T(Ai): 

[Aiap) = T(A,)lap). (8.3) 

As already shown in [4], the orbitals JAlap) transform according to the direct 
product representation o -A x a. Therefore, the branching rules for the symmetry 
adaption of these orbitals are calculated by the character formula 

1 
n(c, a • a ) -  ord G ~c A(C)~ (8.4) 

Since the permutation representation o -A is reducible, it may be first decomposed 
according to the rule (4.5) which implies: 

o ' A ( C )  = 2  n(e, A)x~(C).  (8.5) 
e 

Because of the well-known product rule 

1 
n(e, a, c)= Ord G ~ A( c)xe( c)Xa( C)x':( C) (8.6) 

we finally get: 

n(c, A x  a) = ~  n(e, A) �9 n(e, a, c+). (8.7) 
e 

Using Table 4.2 for the relevant group as well as the multiplicities n(e, a, c) given 
in every book on point groups, one can now calculate the branching rules of  the 
replresentation cr A x a induced, by the atomic orbitals or displacement coordin- 
ates. The intermediate representation e serves as a distinguishing index. 

Since the decompositions according to the rules (8.5 and 8.6) are achieved by 
the SALC and the 3jm coefficients respectively, the decomposit ion of the product 

A cr x a is carried out by generalized SALC coefficients first introduced in [4]: 

r p q /  
(8.8) 
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Table KI. Generalized SALC coefficients K(cq,  Aiee, E_p) 
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ee ep ~ =  11 12 21 22 31 32 41 42 

1A 1 E_I 1/2 0 l /2  0 1/2 0 1/2 0 
1A 1 E_2 0 1/2 0 1/2 0 1/2 0 1/2 
1Bl E_I - 1 / 2  0 1/2 0 1/2 0 -1 /2  0 
1B1 E_2 0 1/2 0 - 1 / 2  0 -1 /2  0 1/2 
1E A~I 1/2 0 0 1/2 0 -1 /2  -1 /2  0 
1E_ A21 0 i /2  - l / 2  0 1/2 0 0 -1 /2  
1E B~I -1 /2  0 0 1/2 0 -1 /2  1/2 0 
1E_ B21 0 1/2 1/2 0 -1 /2  0 0 -1 /2  

The transformation of the basis then reads: 

[(,tee, a)Tcq)= Y. K ( ycq, Aiee, ap) . IAi, ap). (8.9) 
ip 

For the details we refer to [4, 5]. The same decomposition or symmetry adaption 
applies to the coordinates within a molecule. When the atomic displacements 
are given by 

X(A , )  = A i -  A ~ or X(A , )k  = Aik -A~ (8.10) 

they are adapted to the group G by Eq. (8.2), i.e. 

X(Ai ,  ap) = E  ( lkl  l ap ) .  X(A, )k .  (8.11) 
k 

The fact that the displacements X(Ai ,  ap) induce the direct product representation 
O-axa has been discussed in [1,3] and indirectly in [2]. Consequently the 
symmetry coordinates of a molecule are given by 

Q(Aee, a; ycq) = ~ K(ycq,  Aiee, ap) . X (Ai, ap). (8.12) 
ip 

As an example we calculate the symmetry coordinates of four atoms at the 
positions A~ of Table 3.2. Because of Eq. (8.2a) we need the decomposition of 
O-AxA 1 and of o-AxE. In the first case the coefficients are simply 
K(eq, Aiee, A~I)= (AilAeeq),  cf. Table 4.3. In the second case Eq. (8.7) yields 
the multiplicities n( A1, A) = n( A2, A) = n( B1, A) = n( B2, A) = 1 and n( E, A) = 2. 
The coefficients K(cq, Aiee, Ep) have been calculated by Eq. (8.9) and are 
compiled in Table 8.1. 

9. The theorem on molecular matrices 

The essential quantitative theorem of monocentric group theory is the Wigner- 
Eckart theorem, which applies to tensor operators or tensor matrices having the 
property: 

_U(g) T_~ U_ (g) -~ = • D~ki(g)T~. (9.1) 
k 
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The theorem reads: 

(aplT~lbq)=~(a]lTC]]b)~'(; + c b) ~. (9.2) 
i p 

As a special case Eq. (9.1) includes the invariant or scalar matrices with 

U_(g) TU(g)-' = _T. (9.3) 

In this case the theorem reduces to: 

(ap[ T[bq) = 6(a, b)~(p, q)(a ]l TI] a)/ d,/~-m a. (9.4) 

Except for a dimensional factor the diagonal elements of a scalar matrix are 
equal to the reduced matrix element. Because of the deltas, this special case is 
sometimes called the non-combination theorem. 

With respect to a basis of atomic or floating orbitals and displacement coordinates, 
such matrices are in general bicentric in the sense that the indices in the bras 
and kets refer to different centres. An example is the matrix _F of the molecular 
force constants. Using the symmetry-adapted displacements of Eq. (8.11) it is 
derived from the scalar molecular potential by 

(Ai, aplFlBk, bq) = 0 2 V/OX(Ai, ap) OX(Bk, bq). (9.5) 

Writing down Eq. (9.3) explicitly shows the involvement of the permutation 
representations: 

A a �9 o't~(g)D,p(g)(At, ap[F[Bk, • b bq)O'~k(g) Drq( q) -= ( Al, an IF[ Bin, br). 
Imnq 

In [5] it has been shown that there is an analogue of  the Wigner-Eckart theorem 
for this bicentric case. The theorem gains advantage from the fact that the pair 
A~, Bk in Eq. (9.5) shares its site group with a certain Cl according to Eq. (5.5). 
The theorem reads: 

(Ai, aplFJBk, bq) 

=~"~,.c~ ~(Aal'FllBb)~cTe(ap b ; ' )  q 

( B )  m A C 
X z ikl ~/dim C/d im e .  (Cl[Ceer). (9.6) 

Keeping close to the terminology of the Wigner-Eckart theorem (Aa ][ F[] Bb)am Cee 

is called the bicentric reduced matrix element (BRM). 

As an example let us calculate the BRMs for a molecule of a set A of equivalent 
atoms. For the sake of simplicity we assume harmonic forces between the 
atoms. Of course, the force constant between two atoms Ai and Ak depends on 
the kind of edge connecting A~ and Ak, i.e. on the equivalence class C given by 

/ A B C \  m z( ~kt ) �9 Thus the constant must be designated by k(AACm). If  we always choose 
z A A A \ I  ~'t 1~1 ) = 1 / ~ ,  the lack of self-interaction causes k(AAA1)=O. Using 
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Eq. (8.2) the entire potential reads: 

dAA )  
V = l  ikrE x,,E k(AAXm) di,/-dl--m-x. \ ikr " E (X(Ai, ap ) -X (Ak ,  ap)) 2. / ap 

(9.7) 

The factor 1/4 results from the unlimited sums for i and k From Eq. (9.5) we 
now get: 

(Ai, aplF[Ak, bq) 

= 6(a, b)3(p, q) ~ k(AAXm) 
.3(m 

�9 ffnAX  m] 
�9 [6(i, k ) n ( n A X ) - ~  ~r \ ikr ] J (9.8) 

where 

N(AAX)  = Y~ r / A A X \  
m 

jkr ) ~ = d im X / d i m  A (9.9) 
kr 

gives the number of edges of class X connecting one atom Aj with its several 
neighbours. 

In the derivation of Eq. (9.8) the symmetry 

r(  AAX~ m = ~r 7( AAX~ m 
2 , \ ikr ] \ kir ] 

has been used. 

The most reliable way to evaluate the BRMs is to first invert Eq. (9.6) by the 
orthogonality relations. This yields: 

( Aa l} FII Bb ) ~c'~e 

= ~ ~ (Ceer]Ct),/dim C. dim e 
ikl pqr 

( ~  b e+~.[ABC~ " 
�9 q r ] \ ikl ] (Ai, aptFtBk , bq). (9.10) 

As for our example inserting (9.8) into Eq. (9.10) yields: 

(Aallr[[Ab)~c'L = a(a, b)a(e, 1)6(6, 1)6(s, 1)`/dim a .  dim C 

�9 [~(C,  A)8(m, 1) x, y' k ( A A X n ) N A A X ) - k ( A A C m ) ] .  

This means that the only non-zero BRMs are: 

(AalIFI1Aa)~. =, /d im a .  dim A . ~ k ( A A X n ) N ( A A X )  
Xn 

(AaJJFIIAa) TMc,, = - , / d i m  a .  d im U -  k(AaCm) for  Cm ~ A1. 

(9.11) 
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Finally, we come to the paradigmatic group C4~ with four atoms of equivalence 
class A. In the case we have N(AAA1) = 1 (irrelevant because of k(AAA1) =0), 
N(AAA2)=I ,  and N(AAC1)=2.  Using the abbreviation k(AAA2)=kl  and 
k(AAC1) = k2 the non-zero BRMs are: 

( AA1 [I FII AA,)  'a,a, = 2(k, +2k2) 

(AA,[I FIIAAt)2tA, = -2k,  

(AA11IFIIAAt) lClA, =--x/8" k2 

(AE II FIIAE)llAl = x/-8(k, + 2k2) 

(AEI]FIIAE)2,A, =-,Jg. k, 

(AE I1F II AE) 1 A, = -4k2.  

(9.12) 

In the more general case of a tensor operator with respect to an atomic orbital 
basis, the theorem on the bicentric matrix elements reads: 

(Ai, aplTjlBk, bq) 

c d671 m a = ~ ~ ~ (Aa[IT IIBb)c~e 
ds~'o Ceer  nil p q 

c ~7 A B C  ~ 
x(ds+ j er~ ) x/-d~-C~-( ikl )(Cl[Ceer) .  (9.13) 

In [5] more details have been given regarding the calculation of the BRMs in 
the case of spherical atomic orbitals. 

10. The geometrical theorem 

The purpose of the symmetry adaption of atomic orbitals and coordinates is the 
diagonalization of scalar matrices as far as possible by group-theoretical means 
(quagi-diagonalization), and the calculation of reduced matrix elements. In the 
case of a bicentric matrix the quasi-diagonalization is given by (cf. 8.12): 

(Aee, a; 7crlFlBCf, b; 8ds) 

= • K(Tcr, Aiee, ap)(Ai, aplF[Bk , bq)K(~ds, Bkchf, bq). 
ikpq 

(lO.1) 

Since the matrix elements with respect to the symmetry-adapted basis are subject 
to the Wigner-Eckart theorem (9.2)-(9.4), there is a relation of the reduced matrix 
elements to the BRMs of Eq. (9.6). Such a relation between different symmetry 
invariants is well known from multi-electron theory. The reduced multi-electron 
and the reduced one-electron matrix elements are interrelated geometrically by 
weight factors. The relating coefficients have been termed g factors by Griffith 
[10] and Schatz and Piepho [11]. The concept of geometrical factors introduced 
in [5] is quite analogous. 
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Introducing now the factors 

GEO~ ( AaBbg l seTc, 4)f6d, a I h~7OCmcrk) 

= {c+dga} �9 , /dim C.  dim c. dim d �9 Y~ {c i 

7 

�9 P l s  e 4) 

\ e  + f k /8  

k + /3 

bff+ h+j~7 

6 0 

(10.2) 

the geometrical theorem expressing the reduced matrix elements in terms of the 
BRMs reads: 

((Aee, a)ycll Tgll(B4)f b)6d)~ 

= Y. ~ GEO,(AaBbgleeyc,  4)f6d, alhnOCmo'k ) �9 (Aal l r  gllBb)c~k.h'~ 
h'qO Cmo-k 

As already mentioned above, the polyhedral isoscalar factors enter this key 
theorem combined with other invariants, the 9j symbols in this case. If  a = b = 1, 
for instance, the geometrical factors are reduced to the polyhedral isoscalars. In 
the case of simply reducible groups, C4v , Oh,  and T d for instance, the indices a, 
fl, 3/, 6, 7, and 0 are dropped. The arrangement of the indices is such that the 
geometrical factors belonging to x = (AaBbg) form a unitary or orthogonal matrix 
with respect to the collective indices y = (eeyc, ~f6d, c~) and z = (h~7OCmcrk): 

dim h . GEOI(x, y, z) . GEOI(X, y, z')* = 6(z, z') 
Y (10.4) 

dim h . GEOI(x, y, z) . GEOI(X, y', z)* = 6(y, y'). 
z 

This means that the number of reduced matrix elements and of BRMs is equal 
and that Theorem (10.3) may be inverted. 

In the important case of scalar operators (g = 1), for example the identity, the 
Hamiltonian, and the force constants of the molecule, the geometrical factors 
are reduced to an expression involving 6j symbols: 

GEOlred ( AaBb I eeyc, d)f6c I ~lCmtrk ) 

e 
{bfc+~}{b+ak~7}x/dim C" dim c/dim k b + a + c -~t3 

( A B C I m  
�9 P I s  e 4) (10.5) 

\ e  § f k / ~  
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The theorem for the quasi-diagonal elements of the operator then reads: 

((ace, a)~'cll TII(B,~f,, b )6c) 
~m = Y~ GEOlrea(AaBbleeyc, chf6cl~lCmo'k). (AallTllBb)cok (10.6) 

~Cmcrk 

We finally come back to the example C4~ and calculate the diagonal elements 
of the matrix of the force constants by Theorem (10.6). As shown in Sect. 8, the 
atomic displacement coordinates transform according to the irreducible rep- 
resentations A1 and E. Thus the displacements of the atoms at the site A induce 
the following irreducible representations: 

x3 = X(All) induces A1, B~, and E(cf. Table 4.3) 

X 1 = x(E1) and x2 = x(E2) induce A1, A2, B1, B2, and E twice (Table 8.1). 

The reduced matrix elements of _F with respect to these normal coordinates now 
follow from (10.6). Because C4~ is simply reducible the indices y, 6, and r/become 
obsolete and are omitted. Further, in the present case, the multiplicity indices e, 
~b, and o" are limited to 1. The reduced matrix elements are given by the three 
relations: 

((Ale, AOcllFll(alf, al)c) 

= • GEOlred(AAIAA~Ilec, lfcICmlk)(AAIlIFIIAA1)~Ik (10.7a) 
Cmk 

Table 10.1. Geometrical factors GEO1r~d(AA~AAlleec, 4~fc IXmo'k) 

eec  d?f c X m o - k  = 
A l l A  1 A21A 1 C l l A  1 

1A1A l 1AIA: 1/2 1/2 l/x/2 
1B:B: 1B:B: 1/2 1/2 -1/~/2 
1E_E_ 1E_E_ 1/,/2 -1/ , /2  0 

Table 10.2. Geometrical factors GEO l~ed ( A E  A E  [ eec, 49fc] Xmtrk ) 

ee  c Of c Xmtrk = 
A1 1A: A1 1B l A2 1A l A2 lB 1 C1 1A: C1 1A 2 C1 1B 1 C1 1B2 

1ALE_ 1ALE_ 1/2 0 1/2 0 1/`/2 0 0 0 
1ALE_ 1B~E_ 0 1/2 0 1/2 0 0 -1/` /2 0 
1B~E_ 1A~E_ 0 1/2 0 1/2 0 0 l/x/2 0 
1B~E 1B~E_ 1/2 0 1/2 0 -1/` /2 0 0 0 
1E_A~ 1E_Aa 1/~/8 -1/`/8 -1/`/8 1/`/8 0 1/2 0 1/2 
1E_A 2 1E_A 2 1/.,/8 1/`/8 -1/-,/8 -1/` /8 0 1/2 0 -1 /2  
1E_B~ 1E B 1 1/`/8 -1/`/8 -1/`/8 1/,/8 0 -1 /2  0 -1 /2  
1E_B2 1E_B2 1/x/8 1/`/8 -1/`/8 -1/`/8 0 -1 /2  0 1/2 
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Table 10.3. Geometrical factors GEO 1 r~d ( AAI A E -  I eec, &fc I Xmo'k) 
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ee c &f  c X m ~ k  = 
A l l E ~  A 2 1 E _  C l l E _  C 1 2 E  

1ALA ~ IE_A~ 1/-,/8 -1 /48  0 1/2 
1B~B~ 1 E B x  -1/-,/8 1/-,/8 0 1/2 
1E_E_ IA~E_ 1/`/8 1/,/8 1/2 0 
1E_E_ t B ~ E  -1/- /8 -1/ , /8  1/2 0 

((Ale, E)cl]FII(A1 f E)c) 

= 2 GEO~r~d(AEAEIlec, l fe[Cmlk)(AElIFllaE)~k (10.7b) 
Cmk 

( ( a l e ,  a,)c]l Frl( al f, E )c) 

= ~ GEOar~d(AA~AEIlec, lfctClnk)(AA,IIVltAE)'~k. (10.7c) 
Cmk 

The geometrical factors of these relations are calculated by (10.5) and compiled 
in the Tables 10.1-10.3. 

Using these tables and the BRMs of the preceding section we get the final results 
for the reduced matrix elements. With Table 10.1: 

((A1A,, A,)A,I[FH(A1A,, A,)A,)= 0 

( (AIB, ,  A1)BII[FII(A1B1, al )Ol)=4k2 

((ALE, A1)E IIFII(A1E, AOE) = ~,/-8( k, + k2). 

With Table 10.2: 

( (AIA, ,  E)EI[FI[(A1A,, E)E) = O, 

((A1B~, E)EIJFII(A1B~, E)E)= 4x/~k2, 

( (AIA, ,  E)E[IFII(A1B,, E ) E )  = 0, 

((ALE, E)A~IIFII(A1E, E)A~) = 2(k~ + k2), 

((ALE, E)A21]F[I(A1E, E)A2) = 2(k~ + k2), 

((ALE, E)B~IIFII(A1E, E)B,) = 2(kl + k2), 

((ALE, E)B21]FII(A1E, E)B2} = 2(k~ + k2). 

Finally with Table 10.3 the non-diagonal elements: 

((Ale, A1)cIIFII(A1 f E)c)= 0 for all combinations of e,f, and c. 

If mA is the mass of the particles at the positions A, the molecular vibration 
frequencies are given by: 

2 ((Ale, a)c]lFll(A1 f a)c) 
pc = (10.8) ma.d,/d~C 
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The two resulting values u 2 = 4 k 2 / m A  and v 2 = 2 ( k l + k 2 ) / m A  have an artificial 
degeneracy due to the over-simplified model of the molecular forces (9.7). This 
does not affect the demonstration of the group-theoretical methods. 

Because of the identical transformation property of atomic p orbitals and of 
cartesian coordinates, Tables 10.1-10.3 also apply to the matrix elements of the 
electronic Hamiltonian with respect to these p orbitals. We only have to replace 
F by H in (10.7a-c). 

As a final example involving the general geometrical factors defined by (10.2), 
we think of an electronic transition (charge transfer) between d orbitals of the 
central atom (d.~z, dyz belong to E)  and molecular orbitals built from Px and py 
orbitals at the positions A. The linear momentum operator transforms according 
to A1 and E. In the first case the special factors apply again. In the latter case 
we get the relation 

((01A1, E)]]p ~ ]](Alf E)d) 

= ~ GEO~(OEAEE]IA,E, l fd]hCmlk) .  (OE]IpE]]AE)~k (10.9) 
hCmk 

with the factors compiled in Table 10.4. Table 10.5 contains the factors for a 
similar transition between atoms of the equivalent sets A and B. The orbitals at 
the latter positions belong to the representation A1, i.e. s, Pz or dz2. 

Table 10.4. Geometrical factors GEO1(OE AE_E_ l eer &fdlhXmo'k) 

ee c &f d hXmok = 
A1A1 1E_ A2A1 1E BIA1 1E_ B2AI 1E 

1AlE 1E_A, 1/2 1/2 1/2 1/2 
1A~E_ 1E_A 2 -1/2 -1/2 1/2 1/2 
1ALE_ 1E B~ 1/2 -1/2 1/2 -1/2 
1A~E_ 1E_B2 1/2 -1/2 -1/2 1/2 

Table 10.5. Geometrical factors GEOI(AE_BA1E [eec, chfdlhXmo'k) 

eec &fd hXm o'k = 
E_ C11A 1E_ C11A2E_ C11B I E_CI 1B 2E_C21A t E_C21A2E_ C21B 1E_C21B 2 

1ALE_ 1A~A 1 1/2 0 0 0 1/2 0 0 0 
1AIE_ 1B2B 2 0 0 0 1/2 0 0 0 -1/2 
1B1E_ 1A~A I 0 0 1/2 0 0 0 1/2 0 
1B1E_ 1B2/] 2 0 -1/2 0 0 0 1/2 0 0 
1E_A 1 1E_E_ 1/4 1/4 -1/4 1/4 -1/4 1/4 1/4 1/4 
l E A  2 l E E  -1/4 -1/4 -1/4 1/4 1/4 -1/4 1/4 1/4 
1E_B l 1E_E_ 1/4 -1/4 -1/4 -1/4 -1/4 -1/4 1/4 -1/4 
1E_B 2 1E_E 1/4 -1/4 1/4 1/4 -1/4 -1/4 -1/4 1/4 
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